这封信建议基于分层成本图的多个自动移动机器人(AMR)的流量管理。多个AMR通过数据分发服务(DDS)进行通信,该数据由同一DDS域中的主题共享。每一层的成本都是由主题操纵的。域中的流量管理服务器将发送或接收到AMR的主题。使用分层成本图,提出并实施了新的禁令,车道过滤器,车队层和区域过滤器的概念。禁止过滤器可以帮助用户设置禁止AMR侵入的区域。车道滤波器可以根据角度图像帮助设置单向方向。车队层可以帮助AMR通过流量管理服务器共享其位置。该区域过滤器请求或接收一个独家区域,该区域只能由一个AMR占用,该区域可以从流量管理服务器中占据。所有层通过现实世界AMR在实验上验证。每个区域都可以使用用户定义的图像或基于文本的参数文件配置。
translated by 谷歌翻译
Prostate cancer is the most common cancer in men worldwide and the second leading cause of cancer death in the United States. One of the prognostic features in prostate cancer is the Gleason grading of histopathology images. The Gleason grade is assigned based on tumor architecture on Hematoxylin and Eosin (H&E) stained whole slide images (WSI) by the pathologists. This process is time-consuming and has known interobserver variability. In the past few years, deep learning algorithms have been used to analyze histopathology images, delivering promising results for grading prostate cancer. However, most of the algorithms rely on the fully annotated datasets which are expensive to generate. In this work, we proposed a novel weakly-supervised algorithm to classify prostate cancer grades. The proposed algorithm consists of three steps: (1) extracting discriminative areas in a histopathology image by employing the Multiple Instance Learning (MIL) algorithm based on Transformers, (2) representing the image by constructing a graph using the discriminative patches, and (3) classifying the image into its Gleason grades by developing a Graph Convolutional Neural Network (GCN) based on the gated attention mechanism. We evaluated our algorithm using publicly available datasets, including TCGAPRAD, PANDA, and Gleason 2019 challenge datasets. We also cross validated the algorithm on an independent dataset. Results show that the proposed model achieved state-of-the-art performance in the Gleason grading task in terms of accuracy, F1 score, and cohen-kappa. The code is available at https://github.com/NabaviLab/Prostate-Cancer.
translated by 谷歌翻译
In this paper, we present a pure-Python open-source library, called PyPop7, for black-box optimization (BBO). It provides a unified and modular interface for more than 60 versions and variants of different black-box optimization algorithms, particularly population-based optimizers, which can be classified into 12 popular families: Evolution Strategies (ES), Natural Evolution Strategies (NES), Estimation of Distribution Algorithms (EDA), Cross-Entropy Method (CEM), Differential Evolution (DE), Particle Swarm Optimizer (PSO), Cooperative Coevolution (CC), Simulated Annealing (SA), Genetic Algorithms (GA), Evolutionary Programming (EP), Pattern Search (PS), and Random Search (RS). It also provides many examples, interesting tutorials, and full-fledged API documentations. Through this new library, we expect to provide a well-designed platform for benchmarking of optimizers and promote their real-world applications, especially for large-scale BBO. Its source code and documentations are available at https://github.com/Evolutionary-Intelligence/pypop and https://pypop.readthedocs.io/en/latest, respectively.
translated by 谷歌翻译
Structure-based drug design (SBDD) aims to discover drug candidates by finding molecules (ligands) that bind tightly to a disease-related protein (targets), which is the primary approach to computer-aided drug discovery. Recently, applying deep generative models for three-dimensional (3D) molecular design conditioned on protein pockets to solve SBDD has attracted much attention, but their formulation as probabilistic modeling often leads to unsatisfactory optimization performance. On the other hand, traditional combinatorial optimization methods such as genetic algorithms (GA) have demonstrated state-of-the-art performance in various molecular optimization tasks. However, they do not utilize protein target structure to inform design steps but rely on a random-walk-like exploration, which leads to unstable performance and no knowledge transfer between different tasks despite the similar binding physics. To achieve a more stable and efficient SBDD, we propose Reinforced Genetic Algorithm (RGA) that uses neural models to prioritize the profitable design steps and suppress random-walk behavior. The neural models take the 3D structure of the targets and ligands as inputs and are pre-trained using native complex structures to utilize the knowledge of the shared binding physics from different targets and then fine-tuned during optimization. We conduct thorough empirical studies on optimizing binding affinity to various disease targets and show that RGA outperforms the baselines in terms of docking scores and is more robust to random initializations. The ablation study also indicates that the training on different targets helps improve performance by leveraging the shared underlying physics of the binding processes. The code is available at https://github.com/futianfan/reinforced-genetic-algorithm.
translated by 谷歌翻译
在本文中,我们提出了一个两阶段优化策略,用于解决名为CCPNRL-GA的大规模旅行推销员问题(LSTSP)。首先,我们假设一个表现出色的人作为精英的参与可以加速优化的收敛性。基于这一假设,在第一阶段,我们将城市聚集并将LSTSP分解为多个子组件,并使用可重复使用的指针网络(PTRNET)优化每个子组件。在亚组件优化之后,我们将所有子巡回仪组合在一起以形成有效的解决方案,该解决方案将与GA的第二阶段相连。我们验证了我们对10个LSTSP的建议的绩效,并将其与传统EAS进行比较。实验结果表明,精英个人的参与可以极大地加速LSTSP的优化,而我们的建议在处理LSTSP方面具有广泛的前景。
translated by 谷歌翻译
在这项工作中,我们引入了削减(对对比和无监督的分割培训),这是第一个完全无监督的深度学习框架,以进行医学图像细分,从而促进了未经标记或注释的绝大多数成像数据的使用。将医学图像分割成感兴趣的区域是促进患者诊断和定量研究的关键任务。该细分的一个主要限制因素是缺乏标记的数据,因为在注释者之间获得每组新的成像数据或任务的专家注释可能是昂贵,劳动力且不一致的:因此,我们利用基于Pixel-的自学意义图像本身的居中补丁。我们无监督的方法是基于对比度学习和自动编码方面的培训目标。以前的医学图像细分学习方法集中在图像级对比度训练上,而不是我们的图像内贴片级别的方法,或者将其用作一项预训练的任务,此后网络之后需要进一步监督培训。相比之下,我们构建了第一个完全无监督的框架,该框架在以像素为中心的斑点级别上运行。具体来说,我们添加了新颖的增强,补丁重建损失,并引入了一个新的像素聚类和识别框架。我们的模型在几个关键的医学成像任务上取得了改进的结果,这是通过对视网膜图像的地理萎缩(GA)区域进行分割的任务进行了固定的专家注释的验证。
translated by 谷歌翻译
遗传算法(GA)是基于遗传学和自然选择原理的基于搜索的优化技术。我们提出了一种算法,该算法通过量子退火器的输入来增强经典GA。与经典GA一样,该算法通过根据其适应性繁殖一系列可能的解决方案来工作。但是,个体的人口是由量子退火器上的连续耦合来定义的,然后通过量子退火产生代表尝试溶液的相应表型。这将定向突变的一种形式引入算法中,可以以各种方式增强其性能。两种关键的增强功能来自具有从父母的适应性(所谓的裙带关系)和退火耦合的连续耦合,从而使整个人群受到最合适的人(所谓的量子量子化)的影响。我们发现我们的算法在几个简单问题上比经典GA更强大。
translated by 谷歌翻译
现代医疗保健系统正在对电子病历(EMR)进行连续自动监视,以识别频率越来越多的不良事件;但是,许多败血症等事件都没有明确阐明前瞻性(即事件链),可用于识别和拦截它的早期不良事件。目前,尚无可靠的框架来发现或描述不良医院事件之前的因果链。临床上相关和可解释的结果需要一个框架,可以(1)推断在EMR数据中发现的多个患者特征(例如,实验室,生命体征等)中的时间相互作用,并且(2)可以识别(s)的模式(s)。到即将发生的不良事件(例如,败血症)。在这项工作中,我们提出了一个线性多元霍克斯进程模型,并与$ g(x)= x^+$链接函数结合起来允许潜在的抑制作用,以恢复Granger Causal(GC)图。我们开发了一个基于两阶段的方案,以最大程度地提高可能性的替代品以估计问题参数。该两相算法可扩展,并通过我们的数值模拟显示有效。随后将其扩展到佐治亚州亚特兰大的Grady医院系统的患者数据集,在那里,合适的Granger Causal图识别出败血症之前的几个高度可解释的链。
translated by 谷歌翻译
物流运营商最近提出了一项技术,可以帮助降低城市货运分销中的交通拥堵和运营成本,最近提出了移动包裹储物柜(MPLS)。鉴于他们能够在整个部署领域搬迁,因此他们具有提高客户可访问性和便利性的潜力。在这项研究中,我们制定了移动包裹储物柜问题(MPLP),这是位置路由问题(LRP)的特殊情况,该案例确定了整天MPL的最佳中途停留位置以及计划相应的交付路线。开发了基于混合Q学习网络的方法(HQM),以解决所得大问题实例的计算复杂性,同时逃脱了本地Optima。此外,HQM与全球和局部搜索机制集成在一起,以解决经典强化学习(RL)方法所面临的探索和剥削困境。我们检查了HQM在不同问题大小(最多200个节点)下的性能,并根据遗传算法(GA)进行了基准测试。我们的结果表明,HQM获得的平均奖励比GA高1.96倍,这表明HQM具有更好的优化能力。最后,我们确定有助于车队规模要求,旅行距离和服务延迟的关键因素。我们的发现概述了MPL的效率主要取决于时间窗口的长度和MPL中断的部署。
translated by 谷歌翻译
进化计算(EC)已被证明能够快速训练深人造神经网络(DNNS)来解决增强学习(RL)问题。虽然遗传算法(GA)非常适合利用既不具有欺骗性也不稀疏的奖励功能,但当奖励函数是这些功能时,它会挣扎。为此,在某些情况下,新颖的搜索(NS)已被证明能够超越梯度跟随优化器,而在其他情况下则表现不佳。我们提出了一种新算法:探索 - 探索$ \ gamma $ - 适应学习者($ e^2 \ gamma al $或eyal)。通过保留动态大小的寻求新颖的代理商的利基市场,该算法可以维持人口多样性,并在可能的情况下利用奖励信号并探索其他奖励信号。该算法将GA的剥削能力和NS的勘探能力结合在一起,同时保持其简单性和优雅性。我们的实验表明,在大多数情况下,Eyal在与GA相当的情况下都胜过NS - 在某些情况下,它可以均优于两者。 Eyal还允许用其他算法(例如演化策略和惊喜搜索)代替利用组件(GA)和探索组件(NS)(NS),从而为未来的研究打开了大门。
translated by 谷歌翻译